If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9n+3n^2=0
a = 3; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·3·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*3}=\frac{0}{6} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*3}=\frac{18}{6} =3 $
| K^2-6k+4=0 | | 2(3g+5)=4(2g-7) | | F(x)=-1/2(-3)^2 | | -2(.5x-1)=4 | | X-0.1x=28000 | | h=5h+6 | | -7q−9=-8q | | 2.3x-2.3=13.8 | | 8+5z=6z | | F(-3)=-1/2x^2 | | 6=c5 | | 6m+8=5m | | 8.6=c-5 | | -37=3n | | 18x=20x-1 | | 1/2(2-p)=-9 | | 7q-(q-3)=3q+3q(q+1) | | -9-7x=-4/7 | | x/2-x/12+3=x+3 | | 5n-50=60 | | -4(2d+5)=8 | | 7x+6x-3x=16+4 | | 51-y=202 | | 5z-10=z+6 | | -7y-4=4yX(8-6)-64 | | 6n+9n–6n=-24+6 | | 2x+51=128 | | 5(b+3)-7(b+1)=-10 | | 1/2(4+1/4)=2(z+1/16) | | 2x2+11x+30=0 | | -.5(n-6)=-3 | | 19w+24=11 |